Algorithm Introduction ========================== .. raw:: html
You can choose language by




.. raw:: html
This project provides 3 types of environment implementations, and 3 baseline algorithms for users to design algorithms and compare their performance. For detailed documentation on environment classes, see: Environment Wrapping; for detailed documentation on algorithm classes, see: Model Construction

Quick Start (Running baseline algorithms) ----------------------------------------------- Baseline1: :code:`BenchEnv_Multi` environment + :code:`A3CLSTM-E2E` algorithm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. raw:: html
Environment code is located at Alg_Base/DAT_Benchmark/envs/environment.py Algorithm code is located at Alg_Base/DAT_Benchmark/models/A3CLSTM_E2E/

You can run the following code to quickly start the algorithm: .. code:: bash cd Alg_Base/DAT_Benchmark/ # Test mode # Test using Cumulative Reward (CR) python ./models/A3CLSTM_E2E/main.py --Mode 0 --Scene "citystreet" --Weather "day" --delay 20 --Test_Param "CityStreet-d" --Test_Mode AR # Test using Tracking Success Rate (TSR) python ./models/A3CLSTM_E2E/main.py --Mode 0 --Scene "citystreet" --Weather "day" --delay 20 --Test_Param "CityStreet-d" --Test_Mode TSR # New training mode python ./models/A3CLSTM_E2E/main.py --Mode 1 --workers 35 --Scene "citystreet" --Weather "day" --delay 20 --Freq 125 --New_Train # Resuming training mode python ./models/A3CLSTM_E2E/main.py --Mode 1 --workers 35 --Scene "citystreet" --Weather "day" --delay 20 --Freq 125 Baseline2: :code:`UAV_VAT_Gymnasium` environment + :code:`D-VAT` algorithm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. raw:: html
Environment code can be found at Alg_Base/DAT_Benchmark/models/D_VAT/DVAT_envs.py Algorithm code can be found at Alg_Base/DAT_Benchmark/models/D_VAT/

You can run the following code to quickly start the algorithm: .. code:: bash cd Alg_Base/DAT_Benchmark/ # Test mode # Test using Cumulative Reward (CR) python ./models/D_VAT/DVAT_main.py -w 1 -m citystreet-day.wbt --train_mode 0 --Test_Mode CR # Test using Tracking Success Rate (TSR) python ./models/D_VAT/DVAT_main.py -w 1 -m citystreet-day.wbt --train_mode 0 --Test_Mode TSR # New training mode python ./models/D_VAT/DVAT_main.py -w 35 -m citystreet-day.wbt --train_mode 1 --New_Train # Resume training mode python ./models/D_VAT/DVAT_main.py -w 35 -m citystreet-day.wbt --train_mode 1 Baseline3(Ours): :code:`Envs` Environment + :code:`R-VAT` Algorithm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. raw:: html
Environment code can be found at Alg_Base/DAT_Benchmark/envs/envs_parallel.py Algorithm code can be found at Alg_Base/DAT_Benchmark/models/R_VAT/

You can run the following code to quickly start the algorithm: .. code:: bash cd Alg_Base/DAT_Benchmark/ # Test mode # Test using Cumulative Reward (CR) python ./models/R_VAT/RVAT.py -w 1 -m citystreet-day.wbt --train_mode 0 --Test_Mode AR # Test using Tracking Success Rate (TSR) python ./models/R_VAT/RVAT.py -w 1 -m citystreet-day.wbt --train_mode 0 --Test_Mode TSR # New training mode python ./models/R_VAT/RVAT.py -w 35 -m citystreet-day.wbt --train_mode 1 --New_Train # Resume training mode python ./models/R_VAT/RVAT.py -w 35 -m citystreet-day.wbt --train_mode 1